If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+20y=18
We move all terms to the left:
2y^2+20y-(18)=0
a = 2; b = 20; c = -18;
Δ = b2-4ac
Δ = 202-4·2·(-18)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{34}}{2*2}=\frac{-20-4\sqrt{34}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{34}}{2*2}=\frac{-20+4\sqrt{34}}{4} $
| u+49+49+36=180 | | (a+2)(a-1)(a+3)=0 | | 2x-2x*2x=-180 | | 37z+z+34+108=180 | | 1/3x+1/4x+25=x | | x+25+41+61=180 | | 2x+7=10-3x | | ⅔(x-1)+4=5 | | 7x+300=x | | s+7+33+70=180 | | 86+52+7y=180 | | 49v+24v+27v=180 | | 1^6+c=4^5 | | 5c+125=180 | | 4k+3k=4K-2 | | 2/3(x-1)+4=5 | | 20y+140=180 | | 4^2x+1=1/32 | | 3y+1/5=0 | | 4y+96=180 | | 16t^2-16t+14400=0 | | 4y+3y+2y=180 | | 16t^2+16t+14400=0 | | F(-10)=-2x+6 | | x-42=38-37 | | F(15)=3x-12 | | 30(h)=30h | | 30-y=2y | | 5z=7=3 | | X(2)+x+3=0 | | 3x^2-2=5x-4 | | (x+7/4)=2-(x-1/6) |